常见问题

公司新闻行业资讯电池百科常见问题
首页新闻资讯常见问题

导致电池组不一致的因素有哪些?

来源:蓝泰阳作者:Blue Taiyang浏览次数:1492发布时间:2022-04-16 16:07:15

导致电池组不一致的因素有哪些?  

导致电池组不一致的因素:
 
1 单体电池之间参数差异
单体电池之间的状态差异主要包括单体电池初始差异和使用过程中产生的参数差异。电池设计、制造、存储以及使用过程中存在多种不可控制的因素,会影响电池的一致性。提高单体电池的一致性是提升电池组性能的先决条件。单体电池参数的相互影响,当前的参数状态受初始状态和时间累积作用的影响。
 
电池容量、电压和自放电速率
电池容量不一致会使电池组各单体电池放电深度不一致。容量较小、性能较差的电池将提前达到满充电状态,造成容量大、性能好的电池不能达到满充电状态。电池电压的不一致将导致并联电池组中单体电池互充电,电压较高的电池将给电压较低的电池充电,这会加快电池性能的衰减,损耗整个电池组的能量。自放电速率大的电池容量损失大,电池自放电速率的不一致将导致电池荷电状态、电压产生差异,影响电池组的性能。
 
电池内阻
串联系统中,单体电池内阻差异将导致各个电池的充电电压不一致,内阻大的电池提前达到电压上限,此时其他电池可能未充满电。内阻大的电池能量损耗大,产生的热量高,温度差异进一步增大内阻差异,导致恶性循环。
 
并联系统中,内阻差异将导致各个电池电流的不一致,电流大的电池电压变化快,使各个单体电池的充放电深度不一致,造成系统的实际容量值难以达到设计值。电池工作电流不同,其性能在使用过程中会产生差异,最终会影响整个电池组的寿命。
 
2 充放电
充电方式影响锂电池组的充电效率和充电状态,过充过放都会损坏电池,多次充放电后电池组会显露不一致性。目前,锂离子电池充电方式有数种,但常见的有分段恒流充电方式和恒流恒压充电方式。恒流充电是较为理想的方式,能够进行安全、有效的满充;恒流恒压充电有效结合了恒流充电和恒压充电的优点,解决了一般恒流充电方式难以精准满充的问题,避免了恒压充电方式在充电初期电流过大对电池造成的影响,操作简单方便。
 
3 温度
锂电池在高温和高放电倍率下的性能会有明显衰减。这是因为锂离子电池在高温条件下和大电流使用时,会造成正极活性物质和电解液的分解,这是放热过程,短时间放出等热量能导致电池自身温度进一步升高,温度升高又加速了分解现象,形成恶性循环,加速分解使电池性能进一步下降。所以,如果电池组热管理不当,会带来不可逆性能损降。
 
4 电池外电路
连接方式
在规模储能系统中,电池将以串并联的方式组合在一起,因此在电池和模块之间会有许多连接电路和控制元件。由于每个结构件或元器件的性能和老化速度不同,以及每个连接点消耗的能量不一致,不同器件对电池的影响不一样,造成电池组系统的不一致。并联电路中电池衰减速度的不一致会加速系统的恶化。
 
连接片阻抗也会对电池组的不一致性产生影响,连接片阻值不尽相同,极柱到各单体电池支路的阻值不同,远离极柱的电池因连接片较长而阻值较大,电流则较小,连接片会使得与极柱相连的单体电池最先达到截止电压,造成能量利用率降低,影响电池性能,而且该单体电池提前老化会导致与其相连的电池过充,造成安全隐患。
 
随着电池循环次数增多,将造成欧姆内阻增加,容量衰减,欧姆内阻与连接片阻值的比率将发生变化。为保证系统安全性,必须考虑连接片阻值的影响。
 
BMS输入电路
电池管理系统(BMS)是电池组正常运行的保障,但BMS输入电路会对电池的一致性产生不利影响。电池电压的监测方法有精密电阻分压、集成芯片采样等,这些方法由于电阻与电路板通路的存在,无法避免采样线外载漏电流,电池管理系统电压采样输入阻抗将增加电池荷电状态(SOC)的不一致性,影响电池组的性能。
 
5 SOC估算误差
SOC不一致产生的原因有单体电池初始标称容量不一致和工作中单体电池标称容量衰减速度不一致。对于并联电路,单体电池的内阻差异会造成电流分配不均,进而导致SOC的不一致。SOC算法包括安时积分法、开路电压法、卡尔曼滤波法、神经网络法、模糊逻辑法、放电测试法等。
 
安时积分法在起始荷电状态SOC0比较准确时有较好的精度,但是库仑效率受电池荷电状态、温度和电流等状态的影响较大,难以准确测量,因此安时积分法很难达到荷电状态估计的精度要求。开路电压法在较长时间静置之后,电池的开路电压与 SOC 存在确定的函数关系,通过测量端电压来获得SOC的估计值。开路电压法具有估算精度高的优点,但是静置时间长的缺点也限制了其使用范围。

新品展示查看更多
品类推荐
聚合物锂电池锂离子电池磷酸铁锂电池镍氢电池锂二氧化锰电池锂亚硫酰氯电池圆柱形电池方形软包电池超薄锂电池异形电池方形电池组扣式电池聚合物锂电池锂离子电池磷酸铁锂电池镍氢电池锂二氧化锰电池锂亚硫酰氯电池
相关资讯最新资讯查看更多
  • 锂电池中电极-电解质界面钝化现象

    在锂离子电池的前几圈循环过程中,电解质会同时与负极、正极发生反应生成具有保护作用的钝化层。此钝化层的生成消耗了部分电解液,可以起到保护电极免受腐蚀性破坏的作用;同时,离子传输扩散通过这层膜的过...

    2024-11-15

  • 电池的回收再制造

    锂离子电池和电池组包含很多种可回收材料,包括锂、钴、锰、镍、铜、钢和塑料等。然而目前并没有鼓励机制或一些规章制度驱动公司进行电池收回,而市场运营的话资金投入效益不佳。因此,许多电芯和电池组生产...

    2024-11-15

  • 电池组失效模式与影响分析

    电池组失效模式与影响分析FMEA是质量分析和可靠性分析都会用到的工具。FMEA是一个工具,它可以系统地分析产品和工艺过程中潜在的失效及其可能性评估其产生的危险,预测可能产生失效的区域以降低风险。当然这...

    2023-03-24

  • 锂电池可靠性设计和维护设计

    可靠性设计和维护设计与其他的工程领域一样,DFR和DFS(DesignforService,维护设计是非常重要的产品设计要素,这两个要素在电子器件安全保障的设计初期就必须与锂离子电池作为一个整体考虑。可靠性设计是一...

    2023-03-21

  • 锂离子电池

    锂离子电池基于德州大学奥斯汀分校JohnGoodenough教授的研究,索尼公司在1991年将锂离子电池商业化。迄今为止,离子电池已经成为世界上产量最大的电池。在2013年,离子圆柱形电芯生产量约6.6亿AH(安时),软...

    2023-02-21

  • 锂电池计算公式总结

    计算公式总结下面是本章所介绍公式的总结列表。基于这些公式,我们可以对设计电池进行基础的理论计算,从而对储能系统的性能有大致的了解。电压V计算公式:V=I×RV=电流I计算公式:I=V/RI2=P/RI=P/V...

    2023-02-20

  • 电网用电池系统的计算

    电网用电池系统的计算上述相同的计算、公式和过程可用于评估和调整用于大型电网或固定系统的基于电池的能量存储系统。大多数电池制造商面临的挑战是,从这些类型应用的信息需求的数量和水平通常比一个大型汽...

    2023-02-16

  • 将客户需求转换为电池组设计

    将客户需求转换为电池组设计经过上述讲解,我们已经对各类公式进行了简单的介绍。在锂离子电池组装工艺过程中,需要把这些公式放在一起使用。在此,我们简单地论述消费者对电池的要求。客户对电池的要求可以...

    2023-02-15

  • 计算锂电池充电电压

    计算锂电池充电电压最高充电电压等于串联的电芯的数目乘以每个电芯的最高充电电压(由制造商规定的):96cellsx4.2Vmax=403V最高充电电压最低放电电压与此计算类似,串联的电芯数目乘以电芯制作商规定的最低放...

    2023-02-15

  • 锂电池功率与能量的比值

    锂电池功率与能量的比值功率/能量比是许多客户和系统设计者用来快速评估某种技术对其应用的适用性的一个快速数字(译者注:即倍率,C-rate)。高功率应用,例如:12V启/停型汽车电池,其比功率的数值(w/kg)通常...

    2023-02-14

  • 最大持续放电电流

    最大持续放电电流系统可以提供的最大持续放电电流的计算方法为:电芯并联的数目(Np)乘以电流(Ic),然后再乘以最大倍率(CMax)。另外一种计算方法,是从制作商的数据清单里得到电芯的最大放电电流,然后再乘以...

    2023-02-13

  • 计算电池系统功率

    计算系统功率考虑到这些基本的计算,我们也可以深入挖掘并了解系统能提供多少能量。除了上面所示的基于欧姆定律的公式外,在计算中也可以使用这几个公式来计算功率和使用功率(以瓦特计算)。在这种情况下,我...

    2023-02-10

  • 计算电池组寿命终端时的能量

    计算电池组寿命终端时的能量假设你可以使用100%的电池能量来达到这个范围,实际上,你只能使用电池能量的80%~90%,这取决于电池的选择和使用情况。这意味着25kWh必须是在该系统设计中可用的能量。换言之,...

    2023-02-09

  • 计算电池组的能量和容量

    计算电池组的能量和容量如何计算电池组的能量(E)。假设我们需要一个25kW的电池组,电池组能量与电池组的电压(Vp)和容量(Ip)存在如下关系:Ep=Vp×Ip假设使用的3.7V的NMC电芯,共计96个,串联后的电池...

    2023-02-08

  • 计算电池组所需的电池单体数量

    计算电池组所需的电池单体数量首先介绍电池组设计过程中如何计算需要多少个电芯以满足所需要的电压和电流。系统需要的电压一般取决于系统的电动机。拥有电池组目标电压,很容易计算出需要多少电芯才能满足系...

    2023-02-07

  • 欧姆定律和基本的电池计算

    欧姆定律和基本的电池计算虽然电池组设计需要用到很多公式,但是欧姆定律是最重要、最基础的公式。欧姆定律描述的是电压、电流以及电阻三者之间的关系由于电压和电流是电池中为数不多的可以测量的物理量(可...

    2023-02-07

  • 锂聚合物电池寿命定义

    锂聚合物电池寿命定义在环境温度下,电池以0.2C充电,电池端电压达到充电限制电压时改为恒流充电,直到充电电流小于20mA时停止充电,搁置0.5-1,再去以0.2C电流放电至终止电压.放电截止后,再搁置0.5~1H.再...

    2022-06-06

  • 锂聚合物电池禁止事项注意

    锂聚合物电池禁止事项:1.不可将电池置于火中。2.不可将电池充电器正负极反接。3.不可将电池短路(P+、P-)。4.避免电池过度冲击和震荡。5.不可拆解或扭曲电池。6.不可浸入水中。7.不可将该电池与其他种类和...

    2022-06-06

  • 冬季更容易出现电池失效的原因是什么?

    冬季更容易出现电池失效的原因是什么?冬季是车辆不易启动的高发季节,尤其是在寒冷的早晨,更容易出现“趴窝”的现象。为什么到了早晨想要出门却启动不了车辆?最常见的原因就是蓄电池失效了。...

    2022-02-06

  • 科学家发明了可以用15年的廉价电池

    2022-02-06

  • 锂聚合物电池鼓包胀气的原因

    锂聚合物电池鼓包胀气的原因:聚合物锂离子电池芯采用的是铝塑複合膜的包装技术,当电池芯内部由于异常化学反应的发生而产生气体时,Pocket会被充起,电池芯鼓胀(有轻微鼓胀和严重鼓胀两种情况),且不论外...

    2022-02-06

  • 计算电池组寿命终端时的能量

    计算电池组寿命终端时的能量假设你可以使用100%的电池能量来达到这个范围,实际上,你只能使用电池能量的80%~90%,这取决于电池的选择和使用情况。这意味着25kWh必须是在该系统设计中可用的能量。换言之,...

    2023-02-09

  • 计算电池组的能量和容量

    计算电池组的能量和容量如何计算电池组的能量(E)。假设我们需要一个25kW的电池组,电池组能量与电池组的电压(Vp)和容量(Ip)存在如下关系:Ep=Vp×Ip假设使用的3.7V的NMC电芯,共计96个,串联后的电池...

    2023-02-08

  • 计算电池组所需的电池单体数量

    计算电池组所需的电池单体数量首先介绍电池组设计过程中如何计算需要多少个电芯以满足所需要的电压和电流。系统需要的电压一般取决于系统的电动机。拥有电池组目标电压,很容易计算出需要多少电芯才能满足系...

    2023-02-07

  • 冬季更容易出现电池失效的原因是什么?

    冬季更容易出现电池失效的原因是什么?冬季是车辆不易启动的高发季节,尤其是在寒冷的早晨,更容易出现“趴窝”的现象。为什么到了早晨想要出门却启动不了车辆?最常见的原因就是蓄电池失效了。...

    2022-02-06

  • 科学家发明了可以用15年的廉价电池

    2022-02-06