电池百科

公司新闻行业资讯电池百科常见问题
首页新闻资讯电池百科

总结低温锂离子启动电池用电解液及电极材

来源:蓝泰阳作者:Bluetaiyang浏览次数:1426发布时间:2022-04-16 16:16:38

总结低温锂离子启动电池用电解液及电极材

普通锂离子电池低温性能差,在极寒条件(一40℃以下)几乎无法充放电。为此,亟需开发出功率密
度高、低温放电性能优异的新型锂离子启动电池。锂离子电池低温性能受电解液和正负极材料影响。
开发低温锂离子启动电池,首先要从电解液和正、负极材料改性入手,以提升锂离子电池的低温放电容量、功率密度、循环寿命等性能。
 

锂电池低温性能主要与电解液的低温导电能力、锂离子在活性电极材料中的扩散献力、电极界面性质
有关。电解液、正极材料、导电剂和粘结剂对锂离子及电子的迁移有较大的影响。
  
锂离子电池低温性能差的原因主要有以下几个方面∶
(1)低温下电解液的黏度增大,甚至部分变为凝固态,致使离子电导率显著降低;
(2)低温下电解液与负极、隔膜的相容性变差,影响锂离子的正常传输;
(3)低温下锂离子在活性电极材料内部的扩散能力下降,电荷转移阻抗显著增大;
(4)低温下负极易析锂,析出的锂易与电解液反应,其产物沉积导致电极 - 电解质界面膜(SEI)厚度增加。
 
因此,为提升锂离子启动电池的低温性能,应主要从以下几方面展开工作∶
(1)提升电解液在低温条件下的离子电导率;
(2)提高低温下锂离子在活性物质中的扩散能力;
(3)在电极-电解质界面形成薄且致密的 SEI 膜。
 
本文综述了从电解液、正极材料和负极材料等方面提升锂离子电池低温性能的研究进展,并据此对电解液和电极材料在低温锂离子启动电池中的应用进行了展望。
 
一、低温电解液的研究及应用展望
 
电解液对锂离子电池低温放电性能的影响最为显著,故在对低温锂离子电池的研宝报道中,关键技术是
提高电解液的低温离子导电能力。
 
1.1 溶剂
 
低温条件下,电解液导电能力下降的主要原因是部分溶剂的凝固,导致锂离子迁移困难。因此,提高电
解液低温导电能力的关键在于抑制低温下溶剂的凝固。这可通过优化溶剂来解决。
 
采用多元溶剂组成的电解液是改善电解液低温性能的重要手段。Plichta等制备了三元溶剂低温电解液
(LiPF/EC/DMC/EMC),所组装的电池在-40℃下仍可正常工作。这种电解液对正极集流体铝的腐蚀较弱,电池循环稳定性较好。在该溶剂组分中,EYC对提高电解液的低温导电能力具有显著的作用。现在国内外主要的电解液企业已把这一组成的电解液作为通用的商业化锂离子电池电解液。但是这种电解液的低温倍率放电不佳,且在更低的温度 (小于一 50℃)环境中已不能放电。
 
1.2 溶质
 
低温条件下,电解液溶质的电化学反应活性影响锂离子电池的低温放电性,读这也是选择低温锂察子由
池溶质的依据。溶质的低温反应活性的强弱也不是孤立的,需与合适的溶剂组分配合,才能发挥其低温
放电性能。提高溶质离子的解离常数与电化学反应活性是开发低温锂离子启动电池用电解液溶质的需要努力的方向。
LiPF6电化学性能稳定,易溶于有机溶剂,是最常用的溶质,但在电池使用过程中遇水易分解为LiF和
HF,且在低温下生成的SEI膜阻抗过大限制了其在低温条件下的应用。LiBF4和LiBOB的电荷转移阻抗较
低,目前被广泛用于锂离子电池低温性能的改善研究。LiBF4具有热稳定性好、电荷转移阻抗小的优点,但其成膜效果较差,溶剂易嵌入负极石墨层间,导致石墨结构塌陷并从集流体剥落。LiBOB因具有良好的成膜性、耐过充性和价格便宜等优点受到研究人员的关注。在 PC基溶剂中,LiBOB能够在负极界面生成稳定的SEI膜,但它却难溶于链状碳酸酯,导致低温下电解液黏度较高,在-50℃已无容量,因此LiBOB常被用作锂盐的添加剂。
 
 1.3 添加剂
 
某些电解液添加剂的加入可提高SEI膜的导电性及稳定性,从而改善锂离子电池的低温性能。因此,电
解液添加剂的选择和优化也是提升低温锂离子启动电池性能的重要环节。碳酸亚乙烯酯(VC)是一种较常
用的添加剂。Aurbach等探究了VC添加剂加入电解液改善电池低温性能的机理; 少量VW加入后,电极界面导电性与稳定性得以提升,从而提高了锂离子电池的低温性能。
 
二、正极材料低温特性的研究及应用展望
早期的研究主要集中在改良电解液的低温特性。随着研究的深入,人们发现,锂离子在正极材料中的扩散能力在很大程度上影响着电池的低温性能。从而,有研究者从正极材料着手改善低温锂离子启动电池的性能。
 
三、负极材料低温特性的研究及应用展望
低温环境下锂离子电池负极材料反应活性下降,极化严重,负极表面金属锂大量沉积,从而严重影响电池的低温性能。因此,改善锂离子启动电池的低温性能,应解决低温下负极材料电荷转移阻抗增大以及锂离子扩散系数减小的问题。

新品展示查看更多
品类推荐
聚合物锂电池锂离子电池磷酸铁锂电池镍氢电池锂二氧化锰电池锂亚硫酰氯电池圆柱形电池方形软包电池超薄锂电池异形电池方形电池组扣式电池聚合物锂电池锂离子电池磷酸铁锂电池镍氢电池锂二氧化锰电池锂亚硫酰氯电池
相关资讯最新资讯查看更多
  • 锂电池中电极-电解质界面钝化现象

    在锂离子电池的前几圈循环过程中,电解质会同时与负极、正极发生反应生成具有保护作用的钝化层。此钝化层的生成消耗了部分电解液,可以起到保护电极免受腐蚀性破坏的作用;同时,离子传输扩散通过这层膜的过...

    2024-11-15

  • 电池的回收再制造

    锂离子电池和电池组包含很多种可回收材料,包括锂、钴、锰、镍、铜、钢和塑料等。然而目前并没有鼓励机制或一些规章制度驱动公司进行电池收回,而市场运营的话资金投入效益不佳。因此,许多电芯和电池组生产...

    2024-11-15

  • 电池组失效模式与影响分析

    电池组失效模式与影响分析FMEA是质量分析和可靠性分析都会用到的工具。FMEA是一个工具,它可以系统地分析产品和工艺过程中潜在的失效及其可能性评估其产生的危险,预测可能产生失效的区域以降低风险。当然这...

    2023-03-24

  • 锂电池可靠性设计和维护设计

    可靠性设计和维护设计与其他的工程领域一样,DFR和DFS(DesignforService,维护设计是非常重要的产品设计要素,这两个要素在电子器件安全保障的设计初期就必须与锂离子电池作为一个整体考虑。可靠性设计是一...

    2023-03-21

  • 锂离子电池

    锂离子电池基于德州大学奥斯汀分校JohnGoodenough教授的研究,索尼公司在1991年将锂离子电池商业化。迄今为止,离子电池已经成为世界上产量最大的电池。在2013年,离子圆柱形电芯生产量约6.6亿AH(安时),软...

    2023-02-21

  • 锂电池计算公式总结

    计算公式总结下面是本章所介绍公式的总结列表。基于这些公式,我们可以对设计电池进行基础的理论计算,从而对储能系统的性能有大致的了解。电压V计算公式:V=I×RV=电流I计算公式:I=V/RI2=P/RI=P/V...

    2023-02-20

  • 电网用电池系统的计算

    电网用电池系统的计算上述相同的计算、公式和过程可用于评估和调整用于大型电网或固定系统的基于电池的能量存储系统。大多数电池制造商面临的挑战是,从这些类型应用的信息需求的数量和水平通常比一个大型汽...

    2023-02-16

  • 将客户需求转换为电池组设计

    将客户需求转换为电池组设计经过上述讲解,我们已经对各类公式进行了简单的介绍。在锂离子电池组装工艺过程中,需要把这些公式放在一起使用。在此,我们简单地论述消费者对电池的要求。客户对电池的要求可以...

    2023-02-15

  • 计算锂电池充电电压

    计算锂电池充电电压最高充电电压等于串联的电芯的数目乘以每个电芯的最高充电电压(由制造商规定的):96cellsx4.2Vmax=403V最高充电电压最低放电电压与此计算类似,串联的电芯数目乘以电芯制作商规定的最低放...

    2023-02-15

  • 锂电池功率与能量的比值

    锂电池功率与能量的比值功率/能量比是许多客户和系统设计者用来快速评估某种技术对其应用的适用性的一个快速数字(译者注:即倍率,C-rate)。高功率应用,例如:12V启/停型汽车电池,其比功率的数值(w/kg)通常...

    2023-02-14

  • 最大持续放电电流

    最大持续放电电流系统可以提供的最大持续放电电流的计算方法为:电芯并联的数目(Np)乘以电流(Ic),然后再乘以最大倍率(CMax)。另外一种计算方法,是从制作商的数据清单里得到电芯的最大放电电流,然后再乘以...

    2023-02-13

  • 计算电池系统功率

    计算系统功率考虑到这些基本的计算,我们也可以深入挖掘并了解系统能提供多少能量。除了上面所示的基于欧姆定律的公式外,在计算中也可以使用这几个公式来计算功率和使用功率(以瓦特计算)。在这种情况下,我...

    2023-02-10

  • 计算电池组寿命终端时的能量

    计算电池组寿命终端时的能量假设你可以使用100%的电池能量来达到这个范围,实际上,你只能使用电池能量的80%~90%,这取决于电池的选择和使用情况。这意味着25kWh必须是在该系统设计中可用的能量。换言之,...

    2023-02-09

  • 计算电池组的能量和容量

    计算电池组的能量和容量如何计算电池组的能量(E)。假设我们需要一个25kW的电池组,电池组能量与电池组的电压(Vp)和容量(Ip)存在如下关系:Ep=Vp×Ip假设使用的3.7V的NMC电芯,共计96个,串联后的电池...

    2023-02-08

  • 计算电池组所需的电池单体数量

    计算电池组所需的电池单体数量首先介绍电池组设计过程中如何计算需要多少个电芯以满足所需要的电压和电流。系统需要的电压一般取决于系统的电动机。拥有电池组目标电压,很容易计算出需要多少电芯才能满足系...

    2023-02-07

  • 欧姆定律和基本的电池计算

    欧姆定律和基本的电池计算虽然电池组设计需要用到很多公式,但是欧姆定律是最重要、最基础的公式。欧姆定律描述的是电压、电流以及电阻三者之间的关系由于电压和电流是电池中为数不多的可以测量的物理量(可...

    2023-02-07

  • 锂聚合物电池寿命定义

    锂聚合物电池寿命定义在环境温度下,电池以0.2C充电,电池端电压达到充电限制电压时改为恒流充电,直到充电电流小于20mA时停止充电,搁置0.5-1,再去以0.2C电流放电至终止电压.放电截止后,再搁置0.5~1H.再...

    2022-06-06

  • 锂聚合物电池禁止事项注意

    锂聚合物电池禁止事项:1.不可将电池置于火中。2.不可将电池充电器正负极反接。3.不可将电池短路(P+、P-)。4.避免电池过度冲击和震荡。5.不可拆解或扭曲电池。6.不可浸入水中。7.不可将该电池与其他种类和...

    2022-06-06

  • 冬季更容易出现电池失效的原因是什么?

    冬季更容易出现电池失效的原因是什么?冬季是车辆不易启动的高发季节,尤其是在寒冷的早晨,更容易出现“趴窝”的现象。为什么到了早晨想要出门却启动不了车辆?最常见的原因就是蓄电池失效了。...

    2022-02-06

  • 科学家发明了可以用15年的廉价电池

    2022-02-06

  • 锂聚合物电池鼓包胀气的原因

    锂聚合物电池鼓包胀气的原因:聚合物锂离子电池芯采用的是铝塑複合膜的包装技术,当电池芯内部由于异常化学反应的发生而产生气体时,Pocket会被充起,电池芯鼓胀(有轻微鼓胀和严重鼓胀两种情况),且不论外...

    2022-02-06

  • 计算电池组寿命终端时的能量

    计算电池组寿命终端时的能量假设你可以使用100%的电池能量来达到这个范围,实际上,你只能使用电池能量的80%~90%,这取决于电池的选择和使用情况。这意味着25kWh必须是在该系统设计中可用的能量。换言之,...

    2023-02-09

  • 计算电池组的能量和容量

    计算电池组的能量和容量如何计算电池组的能量(E)。假设我们需要一个25kW的电池组,电池组能量与电池组的电压(Vp)和容量(Ip)存在如下关系:Ep=Vp×Ip假设使用的3.7V的NMC电芯,共计96个,串联后的电池...

    2023-02-08

  • 计算电池组所需的电池单体数量

    计算电池组所需的电池单体数量首先介绍电池组设计过程中如何计算需要多少个电芯以满足所需要的电压和电流。系统需要的电压一般取决于系统的电动机。拥有电池组目标电压,很容易计算出需要多少电芯才能满足系...

    2023-02-07

  • 冬季更容易出现电池失效的原因是什么?

    冬季更容易出现电池失效的原因是什么?冬季是车辆不易启动的高发季节,尤其是在寒冷的早晨,更容易出现“趴窝”的现象。为什么到了早晨想要出门却启动不了车辆?最常见的原因就是蓄电池失效了。...

    2022-02-06

  • 科学家发明了可以用15年的廉价电池

    2022-02-06